Picard points of random Dirichlet series

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lattice Points in Cones and Dirichlet Series

Hecke proved the meromorphic continuation of a Dirichlet series associated to the lattice points in a triangle with a real quadratic slope and found the possible poles in terms of the fundamental unit. An analogous result is proven for certain elliptical cones where now the poles are determined by the spectrum of the Laplacian on an arithmetic Riemann surface. 1 Some results of Hardy-Littlewood...

متن کامل

Julia Lines of General Random Dirichlet Series

In this paper, we consider a random entire function f(s, ω) defined by a random Dirichlet series ∑∞ n=1Xn(ω)e −λns whereXn are independent and complex valued variables, 0 6 λn ր +∞. We prove that under natural conditions, for some random entire functions of order (R) zero f(s, ω) almost surely every horizontal line is a Julia line without an exceptional value. The result improve a theorem of J....

متن کامل

Natural Boundary of Random Dirichlet Series

For the random Dirichlet series ∞ ∑ n=0 Xn(ω) e−sλn (s = σ + it ∈ C, 0 = λ0 < λn ↑ ∞), whose coefficients are uniformly nondegenerate independent random variables, we provide some explicit conditions for the line of convergence to be its natural boundary a.s. Running Title Natural Boundary of Random Dirichlet Series

متن کامل

Elliptic points of the Picard modular group

We explicitly compute the elliptic points and isotropy groups for the action of the Picard modular group over the Gaussian integers on 2-dimensional complex hyperbolic space.

متن کامل

Dirichlet Series

This definition could have been given to an 18th or early 19th century mathematical audience, but it would not have been very popular: probably they would not have been comfortable with the Humpty Dumpty-esque redefinition of multiplication. Mathematics at that time did have commutative rings: rings of numbers, of matrices, of functions, but not rings with a “funny” multiplication operation def...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin des Sciences Mathématiques

سال: 2000

ISSN: 0007-4497

DOI: 10.1016/s0007-4497(00)00134-2